

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 871108 (AQUAEXCEL3.0). This output reflects only the author’s view and the European Commission cannot be
held responsible for any use that may be made of the information contained therein.

Deliverable D4.8
Virtual Laboratory version 3.0 with
Artificial Agent 1.0
Finn Olav Bjørnson (SINTEF Ocean), Aya Saad (SINTEF Ocean)

Version 1.0

WP 4
Deliverable 4.8
Lead Beneficiary: SINTEF Ocean
Call identifier:
Biological and Medical Sciences - Advanced Communities: Research infrastructures in aquaculture
Topic: INFRAIA-01-2018-2019
Grant Agreement No: 871108
Dissemination level: PU
Date: 30.04.2025

Ref. Ares(2025)3507951 - 30/04/2025

Virtual Laboratory version 3.0 with Artificial Agent 1.0

1

Contents
1. Objective .. 2

2. Background... 2

3. Framework and system architecture ... 2

4. Integrated models .. 4

4.1. Behaviour model ... 4

4.2. Flow model .. 5

4.3. Growth model .. 6

4.4. Water quality model .. 7

4.5. Interactions .. 9

5. Virtual laboratory version 3.0 .. 12

5.1. Web ... 12

5.2. Kopl and FMUs ... 14

6. Artificial agent version 1.0 ... 17

7. Demonstration ... 19

7.1. Virtual lab .. 19

7.2. Artificial agent ... 23

8. Conclusion .. 25

9. References .. 26

Document Information ... 27

Virtual Laboratory version 3.0 with Artificial Agent 1.0

2

1. Objective
This document is part of the AQUAEXCEL3.0, WP4 ‘Technological tools for improved experimental
procedures’ which aims at developing a virtual laboratory system, comprising several mathematical
models like fish growth, hydrodynamic flow field, water quality, and fish behaviour that enables
virtual experiments in aquaculture research facilities. The focus of this document is to present an
overview of the outcome of subtask 4.1.1. The task encompassed integration of the models
developed in the other subtasks into a common framework that allows the models to work together,
extension of the virtual laboratory developed in AQUAEXCEL2020 (Bjørnson et al. 2020) and an
artificial agent that can assist users in running virtual experiments. As such the main deliverable D4.8
is the virtual laboratory that users can access at https://aevirtuallab.online/. This document provides
a brief technical overview of the solution. Specifically, it contains background information for the
modelling framework, descriptions of the solution chosen for integration of the models, the solution
for the virtual laboratory and the artificial agent, as well as selected examples of use of the
laboratory.

2. Background
In AQUAEXCEL2020, one of the main research activities was the development of a virtual laboratory
system that could enable virtual experiments in aquaculture research facilities. This resulted in three
models: growth (Lika et al. 2020), water treatment (Abbink et al. 2020) and flow fields (Alver et al.
2020). These models were combined in a framework that allowed them to synchronize at given
times and thus work together to produce combined simulations. A simple web interface with limited
flexibility for combining the different models (Bjørnson et al. 2020) was developed to demonstrate
the integrations.

In AQUAEXCEL3.0 we wished to continue our work from AQUAEXCEL2020. The growth model was
extended to more life stages and two new species were added, European sea bass and pikeperch
(Lika et al. 2024). The water treatment module was extended with a new CO2 module and a new
model for ponds were added (Gyalog et al. 2024). Additional flow fields were also simulated, adding
to the existing ones (Alver et al. 2024). In addition, a new model for fish behaviour was developed
for Atlantic salmon (Endresen et al. 2024).

The main goal of the subtask described in this document was to ensure that the different models
could communicate and provide a platform for making them available to users. Thus, this deliverable
makes use of all the four models and provides the integration and presentation of all of them.

3. Framework and system architecture
For completeness we include sections from the previous report (Bjørnson et al. 2020) about the
underlying principle of the framework for developing the virtual laboratory:

Virtual Laboratory version 3.0 with Artificial Agent 1.0

3

The standard called Functional Mock-up Interface (FMI) defines how different simulation models
realized in different simulation environments may be integrated in common simulations. Based on
the extensive use of this standard in other industry segments (e.g., automotive and maritime
industries), and the ability to handle models implemented in different systems/tools (see
https://www.fmi-standard.org/tools for a list of eligible tools), FMI was chosen as a basic framework
for model integration in the AQUAEXCEL2020 virtual laboratory and continued to work as our
foundation in AQUAEXCEL3.0.

FMI defines an interface to be implemented by executables called Functional Mock-up Units (FMU)
which contain the submodels. The FMI functions can then be used by a simulation environment to
create one or more instances of an FMU and simulate them, typically together with other models.
An FMU may contain its own solver, in which case it is possible to use FMI for Co-Simulation, where
the submodels communicate by exchanging output values at each communication time step.
Alternatively, if the FMU does not contain a solver, it is recommended to use FMI for Model
Exchange, where the simulation environment connects two or more submodels to a common solver.
Figure 1 illustrates the co-simulation model.

Figure 1 FMI for Co-Simulation (From Blochwitz 2014)

Irrespective of whether FMI for Co-Simulation or Model-Exchange is used, the integration between
and execution of FMUs is governed by an FMI-master application. This application is responsible for
synchronizing the submodels at regular communication time steps, and for collecting all outputs and
assigning all inputs of all FMUs in the system. The information flow between submodels that are to
be interconnected through their respective inputs and outputs is thus maintained by the FMI-master
algorithm rather than being realized as direct information exchange between the FMUs containing
them.

In AQUAEXCEL2020 we used an open source integrator called Coral to integrate and run the different
models. Work on this code has since been discontinued, so in AQUAEXCEL3.0 we switched to
another open source integrator called libcosim developed by the Open Simulation Platform (OSP)
initiative1. The OSP initiative also provides a closed source co-simulation tool free of charge that we
are using as our main component for the examples in the virtual laboratory. This tool handles setting
up, combining, simulating and presenting results of the simulations.

1 https://open-simulation-platform.github.io/

Virtual Laboratory version 3.0 with Artificial Agent 1.0

4

4. Integrated models
The following numerical models are the main components to be included in the virtual laboratory
developed in task 4.1 of AQUAEXCEL3.0.

 Behaviour model of Atlantic salmon. (Task 4.1.2)
 Modelling of hydrodynamic flow fields in tanks and cages (task 4.1.3)
 Growth, nutrition and waste production models for different fish species (task 4.1.4)
 Water quality and water treatment modelling (task 4.1.5)

These models have been realized as FMUs using the principle of Co-Simulation. Detailed outlines,
validation and discussions on the models delivered in tasks 4.1.2, 4.1.3, 4.1.4 and 4.1.5 can be found
in Endresen et al. (2024), Alver et al. (2024), Lika et al. (2024) and Gyalog et al. (2024), respectively.
In this section, we give a short summary of these deliverables for completeness of this report, most
of the summaries are taken from Bjørnson (2020) for work done in AQUAEXCEL2020, while new
additions are added for the work done in AQUAEXCEL3.0. We also describe how they are integrated
in the Virtual Laboratory.

4.1. Behaviour model
The objective of the behaviour model presented by Endresen et al. (2024) was to develop an
individual-based fish behaviour model for simulating full-scale fish populations (e.g., 200 000 fish) in
open sea cages and closed tanks. It was based on the further development of an existing model for
salmon behaviour in open net cages such that it could be applied to other TNA-infrastructures.

The behaviour model considers different factors or parameters that affect the fish swimming
behaviour. These are the cage limits or boundaries including the water surface with waves and cage
walls affected by currents. The model also considers how the fish react to the current passing
through the cage or induced in a tank as well as three dynamic parameters, which are feeding,
temperature and light. Temperature and light will only vary vertically in the model. The fish will also
try to avoid colliding with each other, which is modelled through defining a preferred range of
distance to neighbouring fish and having a set of rules to decide how the fish will react dependent
on how close the fish is to other individuals. An example simulation for a production cage can be
seen in Figure 2.

Figure 2: Fish population in water current, from Endresen et al. 2024

Virtual Laboratory version 3.0 with Artificial Agent 1.0

5

The model is implemented in a simulation software called FhSim, developed by the project partner
SINTEF Ocean. The software contains an option to package the entire simulation and export it as an
FMU. One FMU was created for cages and one for tanks. These models consider factors like waves,
current, number and size of fish as well as feeding. They output variables including fish density, swim
speed and pellet ingestion.

One major obstacle to integrating the behaviour model with the other models was the difference in
timesteps. The behaviour model operates in the magnitude of seconds per time step while the other
models operate in the magnitude of hours. The solution, described in Endresen et al. (2024), and will
be described further in chapter 4.5 was to develop a surrogate model and wrap this in an FMU.

4.2. Flow model
The objective of the flow field model presented by Alver, M. O. et al. (2020, 2024) was to represent
the water currents within the production unit (fish cage or tank), presenting key information related
to the current to the other model components. The developed flow field model uses one approach
for current in tanks – precomputed flow fields from a CFD model (see Figure 3) – and another for
open sea cages – current profiles depending on ambient current conditions. Previously, three tanks
and four sea cage locations were presimulated to provide flow fields. Based on a survey of tank sizes
across the AQUAEXCEL consortium this was extended with two new tank sizes and more variations
in design and flow rates to provide a better coverage of the tank designs. The model interacts with
the other model components either by providing the current speed and direction vector for given
locations, or through providing descriptive numbers for the overall flow field in the production unit.

Figure 3 Example of velocity flow field in HCMR tank, computed using Ansys Fluent. (From Alver 2020)

Virtual Laboratory version 3.0 with Artificial Agent 1.0

6

The flow field model component is written in C++ and packaged both as a Functional Mock-up Unit
(FMU), and as a dynamic library (DLL). The model utilizes the NetCDF 4 library2 which provides
functionality for reading and writing NetCDF files. The main interaction of the flow model with other
models was through the behavior model. It was determined that this was suboptimal using the FMU
framework, thus the flow model is accessed programmatically directly from the behavior model.

4.3. Growth model
The AquaFishDEB model presented in Lika et al. (2020, 2024) is designed to predict growth, feed
consumption and waste production for Atlantic salmon, seabream, rainbow trout, European sea bass
and pikeperch. Specifically, the model predicts 1) fish growth for different feeds (quantity and
composition) and water temperature, and 2) oxygen consumption and waste production (nitrogen,
CO2, solids) at different fish sizes, temperatures, feed rations and diet compositions for individual
fish or groups.

The model is based on the Dynamic Energy Budget (DEB) theory for metabolic organization, which
provides a conceptual and quantitative framework to study the whole life cycle of individual animals
while making explicit use of energy and mass balances (Lika et al., 2020). The model covers all life
stages of a fish (including larvae, juveniles and market size fish) and is explicitly tied with feed and
temperature. It accommodates different feeding strategies (e.g., ad libitum or restricted, feeding
frequency, adaptive feeding) and feed compositions. The output of the model includes fish growth
characteristics (number of fish, mean body-size, total biomass, feed intake, specific growth rate and
feed conversion efficiency), waste production (fecal dry matter and nitrogen-loss, as well as non-
fecal nitrogen loss) and gaseous exchange (O2 consumption and CO2 production).

As presented in Lika et al. (2020), predictions made by the AquaFishDEB model are the end products
of a two-step modeling procedure (Figure 4). The first step involves the parameterization of the DEB
model for each species. In the second step, the DEB parameters are used in the prototype
AquaFishDEB model that then simulates the dynamics for a group of fish exposed to user input
regarding fish and feed characteristics, and the specified experimental conditions. The developed
prototype model is thus able to predict growth, feed consumption and waste production for the fish.

The first step of the modeling procedure is described for three chosen species in Lika et al. (2020):
rainbow trout, seabream and Atlantic salmon. The same procedure is described for new species of
AQUAEXCEL3.0 in Lika et al. (2024): European seabass and pikeperch.

2 NetCDF libraries are open source and can be downloaded at
https://www.unidata.ucar.edu/downloads/netcdf/index.jsp.

Virtual Laboratory version 3.0 with Artificial Agent 1.0

7

Figure 4 Schematic representation of the two-step procedure for the development of the AquaFishDEB model. (From Lika, K.
et al. (2020))

The AquaFishDEB model was first implemented as a stand-alone model in Matlab, and all model
tuning, verification and validation was done using this version of the model. After this, the Matlab
code was converted into C++ using Matlab Coder, thus enabling simulations of the model in C++.
This code was then linked into an FMU-interface implemented in C++, that was compiled, resulting in
an FMU containing the AquaFishDEB-model. The functionality of this version of the model was finally
verified by comparing model outputs from the FMU with those obtained with the original Matlab
implementation. Since pikeperch differs much in the eating habits from the other species, this
species was given a separate FMU.

4.4. Water quality model
Abbink et al. (2020) presents a model that predicts the water quality and water treatment effects in
research infrastructures such as tanks. The model was designed as a generic tool that users of
research facilities could use prior to the start of an experiment to predict the expected water quality
during the experiment. In addition, the model could be a tool for (re-) designing systems so that they
result in the desired water quality for the experiment envisioned. This makes the model a potential
tool for teaching TNA users, research infrastructure technicians and others involved the principles of
water quality control in fish culture units.

Virtual Laboratory version 3.0 with Artificial Agent 1.0

8

The sub-model computes water quality based on input parameters that describe the production plan
and the experimental design. These inputs may either come from the growth model or be provided
as direct inputs to the model if they are known in advance. The model outputs describe water
quality using the most crucial parameters related to ammonia and nitrate in the system (tanks and
filters). Figure 5 provides an overview of the major components of the model. For each
communication time step, the model calculates values such as ammonia production by the fish,
nitrification rate, nitrification capacity, ammonia load to the biofilter, ammonia removal rate,
ammonia concentration in the water, nitrate production, and nitrate in the tanks. Gyalog et al.
(2024) describes an addition to the model where a new component specializing in computing CO2
was added, see Figure 6.

Figure 5 Water quality model (From Abbink et al. 2020)

The water quality model was first implemented in Excel, and all tests and tuning of the model was
done using this implementation. For the final version of the water quality model, the model was fully
reimplemented in C++ to enhance performance and convert it into an FMU.

Figure 6: Design of the CO2 module, from Gyalog (2024)

Virtual Laboratory version 3.0 with Artificial Agent 1.0

9

Gyalog et al. (2024) also describes the development of a pond model. It was determined early in the
project that this model was significantly different from the other models and not suitable for
integration. It was therefore determined that this model would be a standalone model.

4.5. Interactions
The interactions between growth and water treatment were developed and described in Bjørnson
(2020) and is shown in Figure 7. The growth model describes the fish and feeding regime and the
water treatment takes the output from the growth model as input for calculating the quality of the
environment for the fish. With the new solution chosen for integration of FMUs in AQUAEXCEL 3.0 it
is possible to create more advanced combinations of models as shown in Figure 8. The example
shows two groups of fish in the same tank, simulating a different feeding regime for each group to
simulate the effect of “winner” and “loser” fish.

Figure 7: growth coupled to water treatment

Figure 8: Advanced example, two growth models coupled to water treatment

As mentioned in chapter 4.1, one major obstacle for co-simulation of behaviour and the other
models was the difference in timesteps. The solution was to create a surrogate model, the process
of creating the surrogate model is further described in Saad et al. (2023) and Endresen et al. (2024).

Virtual Laboratory version 3.0 with Artificial Agent 1.0

10

The surrogate model is a substitute or surrogate for the real behaviour model which can estimate
results based on cage conditions and pass those to the growth model while also being able to
communicate in the same time interval as the growth model. It was created based on 2000 different
simulations with the behaviour model within a given input parameter set. As such, the results of the
surrogate model contains both the behaviour and flow model. A schematic for the surrogate
modelling process is presented in Figure 9. The surrogate model can be used instead of the actual
behaviour model if the simulation inputs and net cage metrics are within the variable space the
surrogate model was developed for.

By developing this surrogate model, we can get estimates in seconds rather than hours when
combining the model with growth. To make the two models talk to each other the growth model
added two more inputs: fishAppetite which describes how much of the feed the fish are able to eat
in the given timestep, and fishVelocity which affects the energy use of the growth model. To get
estimates on appetite and speed from the surrogate model the growth model has to pass
predictions of upcoming feeding periods and how much feed is planned, the number of fish and
their weight and stomach content. With this information the surrogate model can predict the
swimming speed and how much of the planned feed the fish will consume. Figure 10 illustrates the
coupled FMU system.

Figure 9: Schematics describing workflow of surrogate model development, input and output parameters of the surrogate
model. Figure from Saad et al. (2023).

Virtual Laboratory version 3.0 with Artificial Agent 1.0

11

Figure 10: Surrogate behaviour model coupled to growth

As mentioned in chapter 4.2, the flow model provides a set of current profiles for the entire cage or
tank volume. The behaviour model simulates up to 200.000 fish and making an FMU call for each of
these to ask for the current at their position would be too time consuming. Instead, the flow model
is integrated directly into the behaviour FMU so the calls can be executed internally and thus speed
up the communication. Figure 11 shows the behaviour model with the possibility to directly specify
where the current profile file is located.

Figure 11: Behaviour with integrated flow model. The input presimulated flow file can be specified as nc_file.

Figure 12 provides an overview of the connections between all models developed in WP4.1 during
AQUAEXCEL3.0.

Virtual Laboratory version 3.0 with Artificial Agent 1.0

12

Flow Behaviour
Cage

Behaviour
Tank

Surrogate
Behaviour

Cage

Generic
Growth

Pikeperch
GrowthWater qualityPond with

Carp

Position/
Current Surrogate

function

Swimspeed
%eaten

Satiation
Fish size
Feeding

Waste production
O2 consumption

Figure 12: Overview of connections between models

5. Virtual laboratory version 3.0
The virtual laboratory version 3.0 consists of three major parts: A web interface that provides advice
and tutorials to users who want to set up a virtual experiment, the necessary components to set up
a virtual laboratory, and a virtual assistant that provides chat functionality for advising users. The
first two will be described in this chapter while we dedicate the next chapter to the artificial agent
which provides the most novel functionality compared with the virtual laboratory version 2.0.

5.1. Web
The user interface is implemented in Django3, which is running in a Python environment which in
turn is running on top of a MySQL database. To improve the user experience of the Virtual
Laboratory, we make use of Bootstrap4, an open source toolkit for developing with HTML, CSS and
JS. To have good modularity in the user interface, we have separated functionality into different
applications running in a common project environment. Figure 13 provides an overview of the data
packages currently running on the system. The Tutorials app handles tutorials for different
simulations, Downloads handles all downloads, the Assistant packages the communication interface
for the intelligent agent, and Admin provides an interface for admin users.

3https://www.djangoproject.com/
4 https://getbootstrap.com/

Virtual Laboratory version 3.0 with Artificial Agent 1.0

13

Virtuallab (Project)

DataBase (MySQL Server)

Django

Python

Downloads
(app)

Assistant
(app)

Tutorials
(app) Admin(app)

Figure 13: Modules of the website

Figure 14 describes the overall flow of information in the Virtual Laboratory. To understand the flow,
we need to go into the communication flow of the Django framework we are building upon. The
Django framework closely follows the Model View Controller Architecture5. However, since the
Control part is covered by the framework, and most of the action happens in the views and template
layer, it is often referred to as a Model Template View architecture. The Model layer handles
everything related to the data: access, validation, behavior and relationships. The template layer
contains presentation logic, how content should be presented to the user through Web pages or
other types of documents. The View layer contains the business logic, it functions as a bridge
between the data in the models and the presentations in the templates.

Communication between the Model layer and the database is abstracted away in the Django
framework. We only need to access the data in the Model layer and the underlying framework will
update the database for us. Functions in the View layer has full access to variables and methods in
the Model layer. Data from the View may be passed to appropriate templates which are then
rendered to be presented for the user in a browser. The user then provides inputs which are
transferred through the URL dispatcher back into an appropriate View.

5 https://en.wikipedia.org/wiki/Model-view-controller

Virtual Laboratory version 3.0 with Artificial Agent 1.0

14

Django
Template

Browser

URL dispatcher

View

Model

DataBase (MySQL Server)

Figure 14: High level communication

5.2. Kopl and FMUs
In the virtual laboratory 2.0, we implemented a web interface for running a simulation. This traded
flexibility for usability. In version 3.0 we wanted to increase flexibility of the tools we provided so
that users could create their own virtual laboratories independent of our web solution and our
predetermined configurations. Thus, the decision was made to use the Open Simulation Platform6
framework. In addition to providing an open source numerical solver for our FMU the platform also
provides a simulation tool that can be downloaded free of charge, Kopl7.

With this tool and the provided FMU’s a user can build their own virtual laboratory and perform
virtual experiments. Figure 15 provides an overview of the major modules that can be downloaded
from the website of the virtual laboratory.

FMU
Growth
Generic

Kopl 2.0
FMU

Water
Treatment

FMU
Flow

FMU
Growth

Pikeperch

FMU
Behaviour

Cage

FMU
Behaviour

Tank

FMU
Behaviour
Surrogate

Model
descriptions

XML

Examples
XML

Figure 15: Modules for creating a virtual lab

With Kopl (Figure 16) a user can drag and drop different FMU’s, create multiple experimental setups,
simulate them and study the results. They can also create their own FMU’s and connect these to the
FMU’s provided through AQUAEXCEL. In essence, this provides the “direct framework access”

6 https://opensimulationplatform.com/
7 https://open-simulation-platform.github.io/kopl

Virtual Laboratory version 3.0 with Artificial Agent 1.0

15

described for the virtual laboratory 2.0 in Bjørnson (2020) but with a graphical user interface to
support the user through the process.

Figure 16: Kopl example, setting up an experiment

This solution increased flexibility but lowered usability. To compensate for this loss of useability we
have provided preconfigured cases that users can use as a starting point to tune their experiments
(see Figure 17 for how the configurations are structured for each example, and Figure 18 for how a
typical configuration file is set up). Another benefit of using the Kopl tool is that anyone who wishes
to provide a virtual version of their laboratory can set it up in the kopl-tool and export it with
configurations and FMUs to any potential user of the infrastructure.

We’ve also created tutorials in the online part of the virtual lab explaining both in text and video
how to set up an experiment. In addition, the virtual assistant has been trained on the
documentation of all models to provide a chat interface to users wanting to set up their virtual
experiment.

Documentation of all models are provided in modeldescription.xml files as per the FMI standard.
These files contain the explanation of all variables in and out of the models as well as the units of the
parameters being passed.

Virtual Laboratory version 3.0 with Artificial Agent 1.0

16

Figure 17: Directory structure, FMUs with different configurations

Figure 18: Example configuration

Figure 19: modeldescription.xml example

Virtual Laboratory version 3.0 with Artificial Agent 1.0

17

6. Artificial agent version 1.0
A key component of the virtual lab’s web structure is the Assistant Module, which features an AI-
powered chatbot designed to streamline user interaction. Initially, the platform employed a BERT-
based chatbot to interpret natural language queries and guide users in configuring aquaculture
simulations (see Figure 20). BERT (Bidirectional Encoder Representations from Transformers) was
selected for its deep contextual language understanding, enabling it to analyze user input effectively.
The model was fine-tuned on 156,060 phrases categorized into five distinct simulation setup
classes (Growth, Water Treatment, Behavior, Growth-Water Treatment, and Growth-Behavior),
achieving 82% accuracy. Users could describe their simulation scenario in free text, and BERT would
direct them to the corresponding tutorial from these predefined classes. To further refine the
system, a feedback mechanism collected user interactions, gradually expanding the training dataset
to 256,160 samples for ongoing improvement.

Figure 20 The assistant module version 0.5: the BERT is the core component of the chatbot

To enhance responsiveness and adaptability, the BERT-based assistant was later replaced with
a GenAI module powered by OpenAI’s API advanced language models, integrated with a Neo4j
knowledge graph. This transition followed a three-step pipeline to ensure structured knowledge
extraction, enhanced reasoning, and seamless chatbot integration (see Figure 21):

Virtual Laboratory version 3.0 with Artificial Agent 1.0

18

Figure 21. Enhancing AI Assistant with GenAI Integration

Step 1: RAG Implementation in Neo4j

The first phase involved constructing a Retrieval-Augmented Generation (RAG) system to ground
responses in domain-specific documents. Key steps included:

- Document Processing: Uploaded materials (e.g., tutorials, videos and urls) were split into
chunks and stored in Neo4j Aura as nodes.

- Graph Relationships: Chunks were linked via relationships like `FIRST_CHUNK`, `NEXT`, and
`PART_OF` to preserve document structure and enable contextual retrieval.

- Vector Embeddings: Each chunk was embedded using OpenAI’s models (e.g., `gpt-4o`) to enable
semantic search during query resolution.

This RAG framework allowed the system to retrieve relevant document snippets dynamically,
ensuring responses were anchored in authoritative content.

Step 2: Knowledge-Augmented Graph (KAG) Enhancement

To refine the RAG’s output, a Knowledge-Augmented Graph (KAG) was built by:

- Concept Extraction: The system identified domain-specific entities (e.g., fish species, simulation
parameters, software tools) and relationships (e.g., `SIMULATES`, `DEPENDS_ON`).

- Graph Enrichment: Additional nodes labeled `Concept` were created in Neo4j, linking them to
document chunks to form a hybrid structure of raw data and abstract knowledge.

- NLP Fine-Tuning: Custom spaCy models and transformer-based classifiers were trained to
improve entity/relationship detection for aquaculture-specific queries.

The KAG enabled multi-hop reasoning—e.g., linking a user’s question about "salmon growth in low-
oxygen water" to related concepts like hydrodynamics or aeration systems—before generating a
response.

Step 3: OpenAI Integration & Chatbot Deployment

The final step replaced BERT with a GenAI-powered assistant by:

Virtual Laboratory version 3.0 with Artificial Agent 1.0

19

- Neo4j-OpenAI Bridging: The `llm_integration.py` module connected OpenAI’s API to Neo4j,
dynamically retrieving graph context (from RAG/KAG) to augment prompts.

- Hybrid Query Resolution: For each user query (e.g., "How to model algae effects on fish
behavior?"), the system:

1. Retrieved relevant chunks/concepts from Neo4j.
2. Formulated a structured prompt combining the query, graph context, and

conversation history.
3. Generated a response using OpenAI’s model, ensuring accuracy and domain

relevance.
- Web Interface: The frontend (templates/fmulab/index.html) provided a chat interface where

users could interact naturally, with responses now leveraging both structured knowledge and
generative flexibility.

This upgrade enabled more natural, context-aware conversations while reducing reliance on manual
fine-tuning.

The GenAI module offered significant improvements:

- Dynamic Knowledge: Unlike BERT’s static fine-tuning, the KAG-enabled system adapted to new
documents/concepts without retraining.

- Multi-Source Reasoning: Combined retrieved documents, conceptual relationships, and
generative AI for nuanced answers.

- Scalability: OpenAI’s API handled diverse queries beyond the original 5 simulation classes,
supporting open-ended dialogue.

This integration transformed the assistant into a context-aware, self-improving tool, bridging
unstructured user queries with structured aquaculture knowledge. By integrating OpenAI’s API, the
virtual lab now delivers more dynamic and scalable assistance, significantly improving the user
experience.

7. Demonstration
For a more dynamic demonstration, visit https://aevirtuallab.online/ and click through the different
pages. For reference we provide some examples of use in this report.

7.1. Virtual lab
Figure 22 and Figure 23 provides an example of one of the tutorials that can be found on the virtual
laboratory. They contain everything a user needs to create a virtual experiment: a short description
of the model or the coupled system and what it can simulate, a textual step by step instruction on
how to load one of the provided configurations, tutorial videos on basic operations of the kopl tool
as well as advanced instructions for the example in the tutorial, links to necessary modules that
needs to be downloaded, xml descriptions of all variables in the model(s) and links to the theoretical
foundation of the models.

Virtual Laboratory version 3.0 with Artificial Agent 1.0

20

Figure 22: Web tutorial example 1

Virtual Laboratory version 3.0 with Artificial Agent 1.0

21

Figure 23: Web tutorial example 2

Once everything has been downloaded and loaded into the kopl tool, the user can start to play
around with the FMUs, the connections, and the parameters of the model. Figure 24 shows the
interface when the example linking growth to water quality is loaded. On the left side, there’s a list
of different experiments that have been set up. On the top is a graphic interface showing the FMUs.
It’s possible to copy and paste FMUs here, drag and drop them and connect them to each other
using the functions on the top right. The window at the bottom changes to either provide an
overview of the selected FMU so the user can tune the parameters or display the main configuration
of the setup to tune the length of the experiment. It can also show results once a simulation has
been run on the setup, as shown in Figure 25. If a user wants to do more detailed analysis of the
simulation, all results are saved in csv files that can be loaded in their analysis software of choice.

Virtual Laboratory version 3.0 with Artificial Agent 1.0

22

Figure 24: Kopl simulation example

Figure 25: Kopl visualization example

Virtual Laboratory version 3.0 with Artificial Agent 1.0

23

7.2. Artificial agent
The Assistant Module 1.0 exemplifies the core capabilities of an artificial agent: observation,
reasoning, and action. Enhanced with OpenAI’s advanced language models and integrated with a
Neo4j knowledge graph, it evolves from a simple chatbot into a fully functional agent, as defined in
the foundational "Agents" framework Wang (2024). This system goes beyond basic interaction—it
actively processes inputs, leverages tools like Large Language Models (LLMs) and knowledge graphs,
and delivers intelligent responses, embodying true agentic behavior. Below, we examine how its
components (Figure 26, Figure 27) align with these principles.

The Assistant Module operates as an agent by:

- Observing user queries through natural language input,
- Reasoning over the input using contextual data retrieved from Neo4j,
- Acting by generating tailored, knowledge-grounded responses via OpenAI’s LLM.

Figure 26 The RAG Neo4j graph database scheme

Figure 27 The KAG Neo4j graph database scheme

This loop mirrors the standard architecture of an intelligent agent:

- Figure 26 depicts the RAG (Retrieval-Augmented Generation) generated Neo4j scheme, which
forms the agent’s memory system. By chunking documents, generating vector embeddings, and
modeling relationships in Neo4j, the agent retrieves precise, domain-relevant information for each
query.

- Figure 27 introduces the KAG (Knowledge-Augmented Graph) generated Neo4j scheme, enabling
multi-hop reasoning. Explicitly modeled concepts (e.g., fish species, simulation parameters) allow
the agent to infer connections beyond direct query terms, enhancing response depth.

- Figure 28 and Figure 29 contrast responses generated with RAG alone (Figure 28) versus RAG + KAG
(Figure 29), demonstrating the agent’s evolution from basic retrieval to sophisticated knowledge
synthesis.

Virtual Laboratory version 3.0 with Artificial Agent 1.0

24

Figure 28 The OpenAI agent response based on the RAG

Figure 29 The OpenAI agent response based on the KAG enhancement over the RAG

As highlighted in the foundational "Agents" framework Wang (2024), effective agents rely on tools
to extend their capabilities. In the assistant module:

- Neo4j serves as the agent’s dynamic memory and retrieval tool,
- OpenAI’s LLM acts as the core reasoning engine,
- The LLM integration module orchestrates tool usage, ensuring seamless knowledge retrieval

and response generation.

 This modular design allows the agent to improve continuously—without retraining—simply by
updating documents or refining concept relationships in the graph.

The user-friendly web interface (Figure 30) is where the agent manifests its intelligence. By providing
natural, interactive communication, it bridges the gap between the user and the agent’s complex
reasoning pipelines. This seamless integration showcases how artificial agents can be deployed in
domain-specific settings (e.g., aquaculture) to deliver precise, context-aware assistance.

Virtual Laboratory version 3.0 with Artificial Agent 1.0

25

Figure 30 The assistant user interface

The GenAI-powered Assistant Module is a fully realized artificial agent, combining RAG, KAG,
OpenAI’s reasoning, and an intuitive interface. It observes, reasons with structured knowledge, and
acts through informed responses—embodying the modern agent paradigm in a practical, user-
centric application.

8. Conclusion
The virtual laboratory 3.0 has been implemented, integrating new and upgraded models developed
in AQUAEXCEL3.0. The laboratory consists of three major parts: The website which offers resources,
tutorials and assistance to users. Several different downloadable modules that users can utilize to
create their own virtual laboratories and perform virtual experiments. And finally, a chatbot
assistant that can provide users with context aware assistance through a chat interface.

The major difference from version 2.0 to 3.0 is to make users responsible for downloading modules
and setting up their own simulations. This has led to an increase in flexibility and generalisation of
the tool. The drawback is a decrease in usability, we have sought to mediate this through an
increased focus on tutorials, both written and videos, providing example configurations that acts as
a starting point, and providing a chat interface to a context aware, self-improving AI module that can
answer questions regarding setup and simulations.

Virtual Laboratory version 3.0 with Artificial Agent 1.0

26

9. References
 Abbink, W. et al. (2020) D5.7 Final model on water quality and water temperature for

experimental facilities, AQUAEXCEL2020 Report.

 Alver, M. O. (2020). D5.8 Final flow field model after testing period, AQUAEXCEL2020 Report

 Alver, M. O. et al. (2024). D4.5 Modelled flow fields, turbulence and residence time in
experimental units, AQUAEXCEL3.0 Report

 Bjørnson, F. O. et al. (2020). D5.9 Virtual laboratory version 2, AQUAEXCEL2020 Report

 Blochwitz, T., Tutorial: Functional Mockup Interface 2.0 and HiL Applications, presentation
from the 10th International Modelica Conference 2014 available at https://www.fmi-
standard.org/literature

 Endresen, P.C. et al. (2024) D4.4 Final model for fish behaviour, AQUAEXCEL3.0 Report

 Gyalog, G. et al. (2024) D4.7 Final models for water quality, AQUAEXCEL3.0 Report

 Lika, K. et al. (2020) D5.6 Final model for growth, feed consumption and waste production
simulation, AQUAEXCEL2020 Report

 Lika, K. et al. (2024) D4.6 Final models for growth, AQUAEXCEL2020 Report

 Saad, A., Su, B. and Bjørnson, F.O., 2023. A web-based platform for efficient and robust
simulation of aquaculture systems using integrated intelligent agents. Procedia Computer
Science, 225, pp.4560-4569.

 Wang, S., Liu, W., Chen, J., Zhou, Y., Gan, W., Zeng, X., ... & Hao, J. (2024). Gui agents with
foundation models: A comprehensive survey. arXiv preprint arXiv:2411.04890.

Virtual Laboratory version 3.0 with Artificial Agent 1.0

27

Document Information
EU Project No 871108 Acronym AQUAEXCEL3.0

Full Title AQUAculture infrastructures for EXCELlence in European fish research 3.0

Project website www.aquaexcel.eu

Deliverable N° D4.8 Title Virtual Laboratory version 3.0 with Artificial
Agent 1.0

Work Package N° 4 Title JRA1 - Technological tools for improved
experimental procedures

Work Package Leader Finn Olav Bjørnson
Work Participants SINTEF, NTNU, HCMR, WU, NOFIMA

Lead Beneficiary SINTEF, 11
Authors Finn Olav Bjørnson, SINTEF Ocean, finn.o.bjornson@sintef.no

Aya Saad, SINTEF Ocean, Aya.Saad@sintef.no
Reviewers Martin Føre, NTNU, martin.fore@ntnu.no

Due date of deliverable 30.04.2025
Submission date 30.04.2025
Dissemination level PU
Type of deliverable R-Other

Version log
Issue Date Revision N° Author Change
24.03.2025 0.1 Finn Olav Bjørnson Document created
28.03.2025 0.4 Finn Olav Bjørnson First version of chapter

1, 2, 3 and 4
03.04.2025 0.8 Finn Olav Bjørnson, Aya Saad First version of chapter

5, 6, 7, 8
10.04.2025 0.9 Finn Olav Bjørnson Revised based on input

from reviewer
29.04.2025 1.0 Finn Olav Bjørnson Minor edits for final

version.

