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1. Objective 
This document is part of the AQUAEXCEL3.0, WP4 ‘Technological tools for improved experimental 
procedures’ which aims at developing a virtual laboratory system, comprising several mathematical 
models like fish growth, hydrodynamic flow field, water quality, and fish behaviour that enables 
virtual experiments in aquaculture research facilities. The focus of this document is to present an 
overview of the outcome of subtask 4.1.1. The task encompassed integration of the models 
developed in the other subtasks into a common framework that allows the models to work together, 
extension of the virtual laboratory developed in AQUAEXCEL2020 (Bjørnson et al. 2020) and an 
artificial agent that can assist users in running virtual experiments. As such the main deliverable D4.8 
is the virtual laboratory that users can access at https://aevirtuallab.online/. This document provides 
a brief technical overview of the solution. Specifically, it contains background information for the 
modelling framework, descriptions of the solution chosen for integration of the models, the solution 
for the virtual laboratory and the artificial agent, as well as selected examples of use of the 
laboratory.   

2. Background 
In AQUAEXCEL2020, one of the main research activities was the development of a virtual laboratory 
system that could enable virtual experiments in aquaculture research facilities. This resulted in three 
models: growth (Lika et al. 2020), water treatment (Abbink et al. 2020) and flow fields (Alver et al. 
2020). These models were combined in a framework that allowed them to synchronize at given 
times and thus work together to produce combined simulations. A simple web interface with limited 
flexibility for combining the different models (Bjørnson et al. 2020) was developed to demonstrate 
the integrations. 

In AQUAEXCEL3.0 we wished to continue our work from AQUAEXCEL2020. The growth model was 
extended to more life stages and two new species were added, European sea bass and pikeperch 
(Lika et al. 2024). The water treatment module was extended with a new CO2 module and a new 
model for ponds were added (Gyalog et al. 2024). Additional flow fields were also simulated, adding 
to the existing ones (Alver et al. 2024). In addition, a new model for fish behaviour was developed 
for Atlantic salmon (Endresen et al. 2024). 

The main goal of the subtask described in this document was to ensure that the different models 
could communicate and provide a platform for making them available to users. Thus, this deliverable 
makes use of all the four models and provides the integration and presentation of all of them. 

3. Framework and system architecture 
For completeness we include sections from the previous report (Bjørnson et al. 2020) about the 
underlying principle of the framework for developing the virtual laboratory: 
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The standard called Functional Mock-up Interface (FMI) defines how different simulation models 
realized in different simulation environments may be integrated in common simulations. Based on 
the extensive use of this standard in other industry segments (e.g., automotive and maritime 
industries), and the ability to handle models implemented in different systems/tools (see 
https://www.fmi-standard.org/tools for a list of eligible tools), FMI was chosen as a basic framework 
for model integration in the AQUAEXCEL2020 virtual laboratory and continued to work as our 
foundation in AQUAEXCEL3.0.  

FMI defines an interface to be implemented by executables called Functional Mock-up Units (FMU) 
which contain the submodels. The FMI functions can then be used by a simulation environment to 
create one or more instances of an FMU and simulate them, typically together with other models. 
An FMU may contain its own solver, in which case it is possible to use FMI for Co-Simulation, where 
the submodels communicate by exchanging output values at each communication time step. 
Alternatively, if the FMU does not contain a solver, it is recommended to use FMI for Model 
Exchange, where the simulation environment connects two or more submodels to a common solver. 
Figure 1 illustrates the co-simulation model. 

 

 

Figure 1 FMI for Co-Simulation  (From Blochwitz 2014) 

Irrespective of whether FMI for Co-Simulation or Model-Exchange is used, the integration between 
and execution of FMUs is governed by an FMI-master application. This application is responsible for 
synchronizing the submodels at regular communication time steps, and for collecting all outputs and 
assigning all inputs of all FMUs in the system. The information flow between submodels that are to 
be interconnected through their respective inputs and outputs is thus maintained by the FMI-master 
algorithm rather than being realized as direct information exchange between the FMUs containing 
them. 

In AQUAEXCEL2020 we used an open source integrator called Coral to integrate and run the different 
models. Work on this code has since been discontinued, so in AQUAEXCEL3.0 we switched to 
another open source integrator called libcosim developed by the Open Simulation Platform (OSP) 
initiative1. The OSP initiative also provides a closed source co-simulation tool free of charge that we 
are using as our main component for the examples in the virtual laboratory. This tool handles setting 
up, combining, simulating and presenting results of the simulations. 

 

 
1 https://open-simulation-platform.github.io/ 
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4. Integrated models 
The following numerical models are the main components to be included in the virtual laboratory 
developed in task 4.1 of AQUAEXCEL3.0. 

 Behaviour model of Atlantic salmon. (Task 4.1.2) 
 Modelling of hydrodynamic flow fields in tanks and cages (task 4.1.3) 
 Growth, nutrition and waste production models for different fish species (task 4.1.4) 
 Water quality and water treatment modelling (task 4.1.5) 

These models have been realized as FMUs using the principle of Co-Simulation. Detailed outlines, 
validation and discussions on the models delivered in tasks 4.1.2, 4.1.3, 4.1.4 and 4.1.5 can be found 
in Endresen et al. (2024), Alver et al. (2024), Lika et al. (2024) and Gyalog et al. (2024), respectively. 
In this section, we give a short summary of these deliverables for completeness of this report, most 
of the summaries are taken from Bjørnson (2020) for work done in AQUAEXCEL2020, while new 
additions are added for the work done in AQUAEXCEL3.0. We also describe how they are integrated 
in the Virtual Laboratory. 

4.1. Behaviour model 
The objective of the behaviour model presented by Endresen et al. (2024) was to develop an 
individual-based fish behaviour model for simulating full-scale fish populations (e.g., 200 000 fish) in 
open sea cages and closed tanks. It was based on the further development of an existing model for 
salmon behaviour in open net cages such that it could be applied to other TNA-infrastructures.  

The behaviour model considers different factors or parameters that affect the fish swimming 
behaviour. These are the cage limits or boundaries including the water surface with waves and cage 
walls affected by currents. The model also considers how the fish react to the current passing 
through the cage or induced in a tank as well as three dynamic parameters, which are feeding, 
temperature and light. Temperature and light will only vary vertically in the model. The fish will also 
try to avoid colliding with each other, which is modelled through defining a preferred range of 
distance to neighbouring fish and having a set of rules to decide how the fish will react dependent 
on how close the fish is to other individuals. An example simulation for a production cage can be 
seen in Figure 2. 

 

Figure 2: Fish population in water current, from Endresen et al. 2024 
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The model is implemented in a simulation software called FhSim, developed by the project partner 
SINTEF Ocean. The software contains an option to package the entire simulation and export it as an 
FMU. One FMU was created for cages and one for tanks. These models consider factors like waves, 
current, number and size of fish as well as feeding. They output variables including fish density, swim 
speed and pellet ingestion. 

One major obstacle to integrating the behaviour model with the other models was the difference in 
timesteps. The behaviour model operates in the magnitude of seconds per time step while the other 
models operate in the magnitude of hours. The solution, described in Endresen et al. (2024), and will 
be described further in chapter 4.5 was to develop a surrogate model and wrap this in an FMU. 

4.2. Flow model 
The objective of the flow field model presented by Alver, M. O. et al. (2020, 2024) was to represent 
the water currents within the production unit (fish cage or tank), presenting key information related 
to the current to the other model components. The developed flow field model uses one approach 
for current in tanks – precomputed flow fields from a CFD model (see Figure 3) – and another for 
open sea cages – current profiles depending on ambient current conditions. Previously, three tanks 
and four sea cage locations were presimulated to provide flow fields. Based on a survey of tank sizes 
across the AQUAEXCEL consortium this was extended with two new tank sizes and more variations 
in design and flow rates to provide a better coverage of the tank designs. The model interacts with 
the other model components either by providing the current speed and direction vector for given 
locations, or through providing descriptive numbers for the overall flow field in the production unit.  

 

Figure 3 Example of velocity flow field in HCMR tank, computed using Ansys Fluent. (From Alver 2020) 
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The flow field model component is written in C++ and packaged both as a Functional Mock-up Unit 
(FMU), and as a dynamic library (DLL). The model utilizes the NetCDF 4 library2 which provides 
functionality for reading and writing NetCDF files. The main interaction of the flow model with other 
models was through the behavior model. It was determined that this was suboptimal using the FMU 
framework, thus the flow model is accessed programmatically directly from the behavior model. 

4.3. Growth model 
The AquaFishDEB model presented in Lika et al. (2020, 2024) is designed to predict growth, feed 
consumption and waste production for Atlantic salmon, seabream, rainbow trout, European sea bass 
and pikeperch. Specifically, the model predicts 1) fish growth for different feeds (quantity and 
composition) and water temperature, and 2) oxygen consumption and waste production (nitrogen, 
CO2, solids) at different fish sizes, temperatures, feed rations and diet compositions for individual 
fish or groups.  

The model is based on the Dynamic Energy Budget (DEB) theory for metabolic organization, which 
provides a conceptual and quantitative framework to study the whole life cycle of individual animals 
while making explicit use of energy and mass balances (Lika et al., 2020). The model covers all life 
stages of a fish (including larvae, juveniles and market size fish) and is explicitly tied with feed and 
temperature. It accommodates different feeding strategies (e.g., ad libitum or restricted, feeding 
frequency, adaptive feeding) and feed compositions. The output of the model includes fish growth 
characteristics (number of fish, mean body-size, total biomass, feed intake, specific growth rate and 
feed conversion efficiency), waste production (fecal dry matter and nitrogen-loss, as well as non-
fecal nitrogen loss) and gaseous exchange (O2 consumption and CO2 production). 

As presented in Lika et al. (2020), predictions made by the AquaFishDEB model are the end products 
of a two-step modeling procedure (Figure 4). The first step involves the parameterization of the DEB 
model for each species. In the second step, the DEB parameters are used in the prototype 
AquaFishDEB model that then simulates the dynamics for a group of fish exposed to user input 
regarding fish and feed characteristics, and the specified experimental conditions. The developed 
prototype model is thus able to predict growth, feed consumption and waste production for the fish. 

The first step of the modeling procedure is described for three chosen species in Lika et al. (2020): 
rainbow trout, seabream and Atlantic salmon. The same procedure is described for new species of 
AQUAEXCEL3.0 in Lika et al. (2024): European seabass and pikeperch. 

 
2 NetCDF libraries are open source and can be downloaded at 
https://www.unidata.ucar.edu/downloads/netcdf/index.jsp. 
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Figure 4 Schematic representation of the two-step procedure for the development of the AquaFishDEB model. (From Lika, K. 
et al. (2020)) 

The AquaFishDEB model was first implemented as a stand-alone model in Matlab, and all model 
tuning, verification and validation was done using this version of the model. After this, the Matlab 
code was converted into C++ using Matlab Coder, thus enabling simulations of the model in C++. 
This code was then linked into an FMU-interface implemented in C++, that was compiled, resulting in 
an FMU containing the AquaFishDEB-model. The functionality of this version of the model was finally 
verified by comparing model outputs from the FMU with those obtained with the original Matlab 
implementation. Since pikeperch differs much in the eating habits from the other species, this 
species was given a separate FMU. 

4.4. Water quality model 
Abbink et al. (2020) presents a model that predicts the water quality and water treatment effects in 
research infrastructures such as tanks. The model was designed as a generic tool that users of 
research facilities could use prior to the start of an experiment to predict the expected water quality 
during the experiment. In addition, the model could be a tool for (re-) designing systems so that they 
result in the desired water quality for the experiment envisioned. This makes the model a potential 
tool for teaching TNA users, research infrastructure technicians and others involved the principles of 
water quality control in fish culture units.  
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The sub-model computes water quality based on input parameters that describe the production plan 
and the experimental design. These inputs may either come from the growth model or be provided 
as direct inputs to the model if they are known in advance. The model outputs describe water 
quality using the most crucial parameters related to ammonia and nitrate in the system (tanks and 
filters). Figure 5 provides an overview of the major components of the model. For each 
communication time step, the model calculates values such as ammonia production by the fish, 
nitrification rate, nitrification capacity, ammonia load to the biofilter, ammonia removal rate, 
ammonia concentration in the water, nitrate production, and nitrate in the tanks. Gyalog et al. 
(2024) describes an addition to the model where a new component specializing in computing CO2 
was added, see Figure 6. 

 

Figure 5 Water quality model (From Abbink et al. 2020) 

The water quality model was first implemented in Excel, and all tests and tuning of the model was 
done using this implementation. For the final version of the water quality model, the model was fully 
reimplemented in C++ to enhance performance and convert it into an FMU. 

 

Figure 6: Design of the CO2 module, from Gyalog (2024) 
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Gyalog et al. (2024) also describes the development of a pond model. It was determined early in the 
project that this model was significantly different from the other models and not suitable for 
integration. It was therefore determined that this model would be a standalone model.  

4.5. Interactions 
The interactions between growth and water treatment were developed and described in Bjørnson 
(2020) and is shown in Figure 7. The growth model describes the fish and feeding regime and the 
water treatment takes the output from the growth model as input for calculating the quality of the 
environment for the fish. With the new solution chosen for integration of FMUs in AQUAEXCEL 3.0 it 
is possible to create more advanced combinations of models as shown in Figure 8. The example 
shows two groups of fish in the same tank, simulating a different feeding regime for each group to 
simulate the effect of “winner” and “loser” fish. 

 

Figure 7: growth coupled to water treatment 

 

Figure 8: Advanced example, two growth models coupled to water treatment 

As mentioned in chapter 4.1, one major obstacle for co-simulation of behaviour and the other 
models was the difference in timesteps. The solution was to create a surrogate model, the process 
of creating the surrogate model is further described in Saad et al. (2023) and Endresen et al. (2024).  
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The surrogate model is a substitute or surrogate for the real behaviour model which can estimate 
results based on cage conditions and pass those to the growth model while also being able to 
communicate in the same time interval as the growth model. It was created based on 2000 different 
simulations with the behaviour model within a given input parameter set. As such, the results of the 
surrogate model contains both the behaviour and flow model. A schematic for the surrogate 
modelling process is presented in Figure 9. The surrogate model can be used instead of the actual 
behaviour model if the simulation inputs and net cage metrics are within the variable space the 
surrogate model was developed for. 

By developing this surrogate model, we can get estimates in seconds rather than hours when 
combining the model with growth. To make the two models talk to each other the growth model 
added two more inputs: fishAppetite which describes how much of the feed the fish are able to eat 
in the given timestep, and fishVelocity which affects the energy use of the growth model. To get 
estimates on appetite and speed from the surrogate model the growth model has to pass 
predictions of upcoming feeding periods and how much feed is planned, the number of fish and 
their weight and stomach content. With this information the surrogate model can predict the 
swimming speed and how much of the planned feed the fish will consume. Figure 10 illustrates the 
coupled FMU system. 

 

Figure 9: Schematics describing workflow of surrogate model development, input and output parameters of the surrogate 
model. Figure from Saad et al. (2023). 
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Figure 10: Surrogate behaviour model coupled to growth 

As mentioned in chapter 4.2, the flow model provides a set of current profiles for the entire cage or 
tank volume. The behaviour model simulates up to 200.000 fish and making an FMU call for each of 
these to ask for the current at their position would be too time consuming. Instead, the flow model 
is integrated directly into the behaviour FMU so the calls can be executed internally and thus speed 
up the communication. Figure 11 shows the behaviour model with the possibility to directly specify 
where the current profile file is located. 

 

Figure 11: Behaviour with integrated flow model. The input presimulated flow file can be specified as nc_file. 

Figure 12 provides an overview of the connections between all models developed in WP4.1 during 
AQUAEXCEL3.0.  
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Figure 12: Overview of connections between models 

5. Virtual laboratory version 3.0 
The virtual laboratory version 3.0 consists of three major parts: A web interface that provides advice 
and tutorials to users who want to set up a virtual experiment, the necessary components to set up 
a virtual laboratory, and a virtual assistant that provides chat functionality for advising users. The 
first two will be described in this chapter while we dedicate the next chapter to the artificial agent 
which provides the most novel functionality compared with the virtual laboratory version 2.0. 

5.1. Web 
The user interface is implemented in Django3, which is running in a Python environment which in 
turn is running on top of a MySQL database. To improve the user experience of the Virtual 
Laboratory, we make use of Bootstrap4, an open source toolkit for developing with HTML, CSS and 
JS. To have good modularity in the user interface, we have separated functionality into different 
applications running in a common project environment. Figure 13 provides an overview of the data 
packages currently running on the system. The Tutorials app handles tutorials for different 
simulations, Downloads handles all downloads, the Assistant packages the communication interface 
for the intelligent agent, and Admin provides an interface for admin users. 

 
3https://www.djangoproject.com/ 
4 https://getbootstrap.com/ 
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Figure 13: Modules of the website 

Figure 14 describes the overall flow of information in the Virtual Laboratory. To understand the flow, 
we need to go into the communication flow of the Django framework we are building upon. The 
Django framework closely follows the Model View Controller Architecture5. However, since the 
Control part is covered by the framework, and most of the action happens in the views and template 
layer, it is often referred to as a Model Template View architecture. The Model layer handles 
everything related to the data: access, validation, behavior and relationships. The template layer 
contains presentation logic, how content should be presented to the user through Web pages or 
other types of documents. The View layer contains the business logic, it functions as a bridge 
between the data in the models and the presentations in the templates. 

Communication between the Model layer and the database is abstracted away in the Django 
framework. We only need to access the data in the Model layer and the underlying framework will 
update the database for us. Functions in the View layer has full access to variables and methods in 
the Model layer. Data from the View may be passed to appropriate templates which are then 
rendered to be presented for the user in a browser. The user then provides inputs which are 
transferred through the URL dispatcher back into an appropriate View. 

 
5 https://en.wikipedia.org/wiki/Model-view-controller 
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Figure 14: High level communication 

5.2. Kopl and FMUs 
In the virtual laboratory 2.0, we implemented a web interface for running a simulation. This traded 
flexibility for usability. In version 3.0 we wanted to increase flexibility of the tools we provided so 
that users could create their own virtual laboratories independent of our web solution and our 
predetermined configurations. Thus, the decision was made to use the Open Simulation Platform6 
framework. In addition to providing an open source numerical solver for our FMU the platform also 
provides a simulation tool that can be downloaded free of charge, Kopl7. 

With this tool and the provided FMU’s a user can build their own virtual laboratory and perform 
virtual experiments. Figure 15 provides an overview of the major modules that can be downloaded 
from the website of the virtual laboratory. 
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FMU
Flow
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FMU
Behaviour 

Cage

FMU
Behaviour 

Tank
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Figure 15: Modules for creating a virtual lab 

With Kopl (Figure 16) a user can drag and drop different FMU’s, create multiple experimental setups, 
simulate them and study the results. They can also create their own FMU’s and connect these to the 
FMU’s provided through AQUAEXCEL. In essence, this provides the “direct framework access” 

 
6 https://opensimulationplatform.com/ 
7 https://open-simulation-platform.github.io/kopl 
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described for the virtual laboratory 2.0 in Bjørnson (2020) but with a graphical user interface to 
support the user through the process. 

 

Figure 16: Kopl example, setting up an experiment 

This solution increased flexibility but lowered usability. To compensate for this loss of useability we 
have provided preconfigured cases that users can use as a starting point to tune their experiments 
(see Figure 17 for how the configurations are structured for each example, and Figure 18 for how a 
typical configuration file is set up). Another benefit of using the Kopl tool is that anyone who wishes 
to provide a virtual version of their laboratory can set it up in the kopl-tool and export it with 
configurations and FMUs to any potential user of the infrastructure. 

We’ve also created tutorials in the online part of the virtual lab explaining both in text and video 
how to set up an experiment. In addition, the virtual assistant has been trained on the 
documentation of all models to provide a chat interface to users wanting to set up their virtual 
experiment. 

Documentation of all models are provided in modeldescription.xml files as per the FMI standard. 
These files contain the explanation of all variables in and out of the models as well as the units of the 
parameters being passed. 
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Figure 17: Directory structure, FMUs with different configurations 

 

Figure 18: Example configuration 

 

Figure 19: modeldescription.xml example 
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6. Artificial agent version 1.0 
A key component of the virtual lab’s web structure is the Assistant Module, which features an AI-
powered chatbot designed to streamline user interaction. Initially, the platform employed a BERT-
based chatbot to interpret natural language queries and guide users in configuring aquaculture 
simulations (see Figure 20). BERT (Bidirectional Encoder Representations from Transformers) was 
selected for its deep contextual language understanding, enabling it to analyze user input effectively. 
The model was fine-tuned on 156,060 phrases categorized into five distinct simulation setup 
classes (Growth, Water Treatment, Behavior, Growth-Water Treatment, and Growth-Behavior), 
achieving 82% accuracy. Users could describe their simulation scenario in free text, and BERT would 
direct them to the corresponding tutorial from these predefined classes. To further refine the 
system, a feedback mechanism collected user interactions, gradually expanding the training dataset 
to 256,160 samples for ongoing improvement. 

 

Figure 20 The assistant module version 0.5: the BERT is the core component of the chatbot  

To enhance responsiveness and adaptability, the BERT-based assistant was later replaced with 
a GenAI module powered by OpenAI’s API advanced language models, integrated with a Neo4j 
knowledge graph. This transition followed a three-step pipeline to ensure structured knowledge 
extraction, enhanced reasoning, and seamless chatbot integration (see Figure 21):   
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Figure 21. Enhancing AI Assistant with GenAI Integration 

Step 1: RAG Implementation in Neo4j 

The first phase involved constructing a Retrieval-Augmented Generation (RAG) system to ground 
responses in domain-specific documents. Key steps included:   

- Document Processing: Uploaded materials (e.g., tutorials, videos and urls) were split into 
chunks and stored in Neo4j Aura as nodes.   

- Graph Relationships: Chunks were linked via relationships like `FIRST_CHUNK`, `NEXT`, and 
`PART_OF` to preserve document structure and enable contextual retrieval.   

- Vector Embeddings: Each chunk was embedded using OpenAI’s models (e.g., `gpt-4o`) to enable 
semantic search during query resolution.   

This RAG framework allowed the system to retrieve relevant document snippets dynamically, 
ensuring responses were anchored in authoritative content.   

Step 2: Knowledge-Augmented Graph (KAG) Enhancement 

To refine the RAG’s output, a Knowledge-Augmented Graph (KAG) was built by:   

- Concept Extraction: The system identified domain-specific entities (e.g., fish species, simulation 
parameters, software tools) and relationships (e.g., `SIMULATES`, `DEPENDS_ON`).   

- Graph Enrichment: Additional nodes labeled `Concept` were created in Neo4j, linking them to 
document chunks to form a hybrid structure of raw data and abstract knowledge.   

- NLP Fine-Tuning: Custom spaCy models and transformer-based classifiers were trained to 
improve entity/relationship detection for aquaculture-specific queries.   

The KAG enabled multi-hop reasoning—e.g., linking a user’s question about "salmon growth in low-
oxygen water" to related concepts like hydrodynamics or aeration systems—before generating a 
response.   

Step 3: OpenAI Integration & Chatbot Deployment   

The final step replaced BERT with a GenAI-powered assistant by:   
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- Neo4j-OpenAI Bridging: The `llm_integration.py` module connected OpenAI’s API to Neo4j, 
dynamically retrieving graph context (from RAG/KAG) to augment prompts.   

- Hybrid Query Resolution: For each user query (e.g., "How to model algae effects on fish 
behavior?"), the system:   

1. Retrieved relevant chunks/concepts from Neo4j.   
2. Formulated a structured prompt combining the query, graph context, and 

conversation history.   
3. Generated a response using OpenAI’s model, ensuring accuracy and domain 

relevance.   
- Web Interface: The frontend (templates/fmulab/index.html) provided a chat interface where 

users could interact naturally, with responses now leveraging both structured knowledge and 
generative flexibility.  

This upgrade enabled more natural, context-aware conversations while reducing reliance on manual 
fine-tuning.  

The GenAI module offered significant improvements:   

- Dynamic Knowledge: Unlike BERT’s static fine-tuning, the KAG-enabled system adapted to new 
documents/concepts without retraining.   

- Multi-Source Reasoning: Combined retrieved documents, conceptual relationships, and 
generative AI for nuanced answers.   

- Scalability: OpenAI’s API handled diverse queries beyond the original 5 simulation classes, 
supporting open-ended dialogue.   

This integration transformed the assistant into a context-aware, self-improving tool, bridging 
unstructured user queries with structured aquaculture knowledge. By integrating OpenAI’s API, the 
virtual lab now delivers more dynamic and scalable assistance, significantly improving the user 
experience. 

7. Demonstration 
For a more dynamic demonstration, visit https://aevirtuallab.online/ and click through the different 
pages. For reference we provide some examples of use in this report.  

7.1. Virtual lab 
Figure 22 and Figure 23 provides an example of one of the tutorials that can be found on the virtual 
laboratory. They contain everything a user needs to create a virtual experiment: a short description 
of the model or the coupled system and what it can simulate, a textual step by step instruction on 
how to load one of the provided configurations, tutorial videos on basic operations of the kopl tool 
as well as advanced instructions for the example in the tutorial, links to necessary modules that 
needs to be downloaded, xml descriptions of all variables in the model(s) and links to the theoretical 
foundation of the models. 
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Figure 22: Web tutorial example 1 
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Figure 23: Web tutorial example 2 

Once everything has been downloaded and loaded into the kopl tool, the user can start to play 
around with the FMUs, the connections, and the parameters of the model. Figure 24 shows the 
interface when the example linking growth to water quality is loaded. On the left side, there’s a list 
of different experiments that have been set up. On the top is a graphic interface showing the FMUs. 
It’s possible to copy and paste FMUs here, drag and drop them and connect them to each other 
using the functions on the top right. The window at the bottom changes to either provide an 
overview of the selected FMU so the user can tune the parameters or display the main configuration 
of the setup to tune the length of the experiment. It can also show results once a simulation has 
been run on the setup, as shown in Figure 25. If a user wants to do more detailed analysis of the 
simulation, all results are saved in csv files that can be loaded in their analysis software of choice. 
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Figure 24: Kopl simulation example 

 

Figure 25: Kopl visualization example 
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7.2. Artificial agent 
The Assistant Module 1.0 exemplifies the core capabilities of an artificial agent: observation, 
reasoning, and action. Enhanced with OpenAI’s advanced language models and integrated with a 
Neo4j knowledge graph, it evolves from a simple chatbot into a fully functional agent, as defined in 
the foundational "Agents" framework Wang (2024). This system goes beyond basic interaction—it 
actively processes inputs, leverages tools like Large Language Models (LLMs) and knowledge graphs, 
and delivers intelligent responses, embodying true agentic behavior. Below, we examine how its 
components (Figure 26, Figure 27) align with these principles.   

The Assistant Module operates as an agent by:   

- Observing user queries through natural language input,   
- Reasoning over the input using contextual data retrieved from Neo4j,   
- Acting by generating tailored, knowledge-grounded responses via OpenAI’s LLM.   

 
 

 

 
Figure 26 The RAG Neo4j graph database scheme 
 

Figure 27 The KAG Neo4j graph database scheme 
 

This loop mirrors the standard architecture of an intelligent agent:   

- Figure 26 depicts the RAG (Retrieval-Augmented Generation) generated Neo4j scheme, which 
forms the agent’s memory system. By chunking documents, generating vector embeddings, and 
modeling relationships in Neo4j, the agent retrieves precise, domain-relevant information for each 
query.   

- Figure 27 introduces the KAG (Knowledge-Augmented Graph) generated Neo4j scheme, enabling 
multi-hop reasoning. Explicitly modeled concepts (e.g., fish species, simulation parameters) allow 
the agent to infer connections beyond direct query terms, enhancing response depth.   

- Figure 28 and Figure 29 contrast responses generated with RAG alone (Figure 28) versus RAG + KAG 
(Figure 29), demonstrating the agent’s evolution from basic retrieval to sophisticated knowledge 
synthesis.   
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Figure 28 The OpenAI agent response based on the RAG  

 

 

Figure 29 The OpenAI agent response based on the KAG enhancement over the RAG 

As highlighted in the foundational "Agents" framework Wang (2024), effective agents rely on tools 
to extend their capabilities. In the assistant module:   

- Neo4j serves as the agent’s dynamic memory and retrieval tool,   
- OpenAI’s LLM acts as the core reasoning engine,   
- The LLM integration module orchestrates tool usage, ensuring seamless knowledge retrieval 

and response generation.   

 This modular design allows the agent to improve continuously—without retraining—simply by 
updating documents or refining concept relationships in the graph.   

  

  

The user-friendly web interface (Figure 30) is where the agent manifests its intelligence. By providing 
natural, interactive communication, it bridges the gap between the user and the agent’s complex 
reasoning pipelines. This seamless integration showcases how artificial agents can be deployed in 
domain-specific settings (e.g., aquaculture) to deliver precise, context-aware assistance.   
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Figure 30 The assistant user interface  

The GenAI-powered Assistant Module is a fully realized artificial agent, combining RAG, KAG, 
OpenAI’s reasoning, and an intuitive interface. It observes, reasons with structured knowledge, and 
acts through informed responses—embodying the modern agent paradigm in a practical, user-
centric application.   

8. Conclusion 
The virtual laboratory 3.0 has been implemented, integrating new and upgraded models developed 
in AQUAEXCEL3.0. The laboratory consists of three major parts: The website which offers resources, 
tutorials and assistance to users. Several different downloadable modules that users can utilize to 
create their own virtual laboratories and perform virtual experiments. And finally, a chatbot 
assistant that can provide users with context aware assistance through a chat interface. 

The major difference from version 2.0 to 3.0 is to make users responsible for downloading modules 
and setting up their own simulations. This has led to an increase in flexibility and generalisation of 
the tool. The drawback is a decrease in usability, we have sought to mediate this through an 
increased focus on tutorials, both written and videos, providing example configurations that acts as 
a starting point, and providing a chat interface to a context aware, self-improving AI module that can 
answer questions regarding setup and simulations. 
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